Odorant-Binding Proteins OBP57d and OBP57e Affect Taste Perception and Host-Plant Preference in Drosophila sechellia
نویسندگان
چکیده
Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, whereas the other species in the complex are repelled. Here, using interspecies hybrids between D. melanogaster deficiency mutants and D. sechellia, we showed that the Odorant-binding protein 57e (Obp57e) gene is involved in the behavioral difference between the species. D. melanogaster knock-out flies for Obp57e and Obp57d showed altered behavioral responses to hexanoic acid and octanoic acid. Furthermore, the introduction of Obp57d and Obp57e from D. simulans and D. sechellia shifted the oviposition site preference of D. melanogaster Obp57d/e(KO) flies to that of the original species, confirming the contribution of these genes to D. sechellia's specialization to M. citrifolia. Our finding of the genes involved in host-plant determination may lead to further understanding of mechanisms underlying taste perception, evolution of plant-herbivore interactions, and speciation.
منابع مشابه
Functional Evolution of Duplicated Odorant-Binding Protein Genes, Obp57d and Obp57e, in Drosophila
Odorant-binding proteins (OBPs) are extracellular proteins found in insect chemosensilla, where they participate in the sensing of odors, tastes, and pheromones. Although a large number of OBP genes have been identified in insect genomes, their molecular functions and biological roles have been clarified in limited cases. Two OBP genes, Obp57d and Obp57e, were involved in the evolution of host-...
متن کاملRapid evolution of two odorant-binding protein genes, Obp57d and Obp57e, in the Drosophila melanogaster species group.
Genes encoding odorant-binding protein (OBP) form a large family in an insect genome. Two OBP genes, Obp57d and Obp57e, were previously identified to be involved in host-plant recognition in Drosophila sechellia. Here, by comparing the genomic sequences at the Obp57d/e locus from 27 Drosophila species, we found large differences in gene number between species. Phylogenetic analysis revealed tha...
متن کاملCan a Taste for Poison Drive Speciation?
0955 The endless struggle for survival in nature inevitably boils down to fi nding food and eluding predators. To avoid the latter, many plants produce chemical weapons to discourage predators. A sound strategy overall, but the rules of coevolutionary war suggest that an herbivore will evolve resistance to the toxic defenses of plants. The fruit fl y Drosophila sechellia , for example, has a pe...
متن کاملA high-frequency null mutant of an odorant-binding protein gene, Obp57e, in Drosophila melanogaster.
We have found a null mutant of an odorant-binding protein, Obp57e, in Drosophila melanogaster. This frameshift mutation, which is a 10-bp deletion in the coding region, is at a high frequency in the Kyoto population and is also present in Taiwan and Africa. We have sequenced a 1.5-kb region including the tandemly duplicated gene, Obp57d, from 16 inbred lines sampled in Kyoto, Japan. The analyse...
متن کاملA locus in Drosophila sechellia affecting tolerance of a host plant toxin.
Many insects feed on only one or a few types of host. These host specialists often evolve a preference for chemical cues emanating from their host and develop mechanisms for circumventing their host's defenses. Adaptations like these are central to evolutionary biology, yet our understanding of their genetics remains incomplete. Drosophila sechellia, an emerging model for the genetics of host s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007